

UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO TECNOLÓGICO

Departamento de Engenharia Elétrica e Eletrônica Campus Trindade - CEP 88040-900 -Florianópolis SC Tel: 48 3721-2260

PLANO DE ENSINO 2020.2¹

I. IDENTIFICAÇÃO DA DISCIPLINA:								
CÓDIGO	NOME DA DISCIPLINA	HORAS-AULA SEMANAIS		HORAS-AULA				
CODIGO		TEÓRICAS	PRÁTICAS	SEMESTRAIS				
EEL7061	Eletrônica I Turmas 5202(B) e 5235(B)	4	2	108 horas				

II. PROFESSOR(ES) MINISTRANTE(S)

Prof. Jader de Lima Filho: Prof Márcio Holsbach Costa

III. PRÉ-REQUISITO(S) (Código(s) e nome da(s) disciplina(s)

EEL7045 - Circuitos Elétricos A: FSC5114 - Física IV

IV. CURSOS PARA OS QUAIS A DISCIPLINA É OFERECIDA

(202) Engenharia Elétrica; (213) Engenharia de Produção Elétrica; (235) Engenharia Eletrônica

V. EMENTA

Introdução à eletrônica; amplificadores operacionais; diodos; o transistor de junção bipolar; transistores de efeito de campo; componentes optoeletrônicos.

VI. OBJETIVOS

Compreender os princípios básicos associados a dispositivos semicondutores e suas aplicações em circuitos. Capacitar o estudante a analisar circuitos eletrônicos básicos com diodos, transistores e amplificadores operacionais, como também a projetar circuitos simples.

VII. CONTEÚDO PROGRAMÁTICO

- 1. Amplificadores operacionais: o amplificador operacional; configurações básicas com amplificadores operacionais ideais; amplificador operacional real.
- 2. *Diodos*: materiais semicondutores; circuitos equivalentes; análise de circuitos com diodos; retificadores, ceifadores e grampeadores; diodos zener; diodo emissor de luz e fotodiodo.
- 3. *Transistores bipolares de junção*: estrutura física; regiões de operação; circuitos de polarização; modelo de pequenos sinais; análise de circuitos com transistores.
- 4. *Transistores de efeito de campo:* estrutura física e operação; circuitos de polarização; modelo de pequenos sinais; o MOSFET como chave; análise de circuitos com transistores

VIII. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Durante o calendário emergencial, as aulas teóricas utilizarão a plataforma moodle. A partir dela, serão realizadas atividades síncronas (aulas expositivas com resolução de problemas) em sistemas de teleconferência associados ou por disponibilização de link (GoogleMeet/MSTeams/WebConf/etc) e atividades assíncronas (exercícios). Ao longo do semestre as estratégias utilizadas poderão ser adaptadas de forma a incrementar a participação dos estudantes no desenvolvimento da disciplina.

As atividades práticas de laboratório serão desenvolvidas na forma síncrona utilizando a plataforma Meet/Moodle/etc. Para tanto, será utilizado o simulador gratuito LTSPICE (http://www.linear.com/designtools/software). Os roteiros dos experimentos serão disponibilizados no repositório Google Drive, e poderão ser simulados nos computadores dos estudantes.

IX. ATIVIDADES PRÁTICAS

As atividades de laboratório, e respectivos relatórios, serão realizadas em equipes de dois (2) alunos (número máximo). Cada

¹ Plano de ensino adaptado, em caráter excepcional e transitório, para substituição de aulas presenciais por aulas em meios digitais, enquanto durar a pandemia do novo coronavírus – COVID-19, em atenção à Resolução Normativa 140/2020/CUn.

aluno, individualmente, deverá enviar ao professor uma versão digitalizada das atividades pré-Laboratório (pré-lab). Ao término da aula, uma cópia digitalizada da folha de dados (resultados de simulação) deverá ser transmitida pela equipe ao professor, para avaliação. Alternativamente, fotos da folha de dados poderão ser transmitidas.

No início e final da aula de laboratório, os alunos deverão estar na sala virtual, para verificação da presença. Durante a realização das atividades, poderão deixar a sala e trabalhar remotamente em equipe. No caso de impossibilidade de conexão, o aluno poderá realizar o experimento em data e horário a serem definidos.

O desempenho do estudante será avaliado através de doze (12) experiências de laboratório. A nota (L) será calculada através da média aritmética das notas atribuídas aos (12) experimentos. A cada experimento será atribuída uma nota $NE = 0.3 \times PL + 0.7 \times RE$, onde PL é a nota de pré-lab e RE é a nota do relatório (folha de dados) do experimento.

Os roteiros de laboratório estão disponíveis em: https://drive.google.com/folderview?id=0B5OZPh4KR_74Z3R3MzEyUU5P NVE&usp=sharing

No que se refere ao pré-lab, sua preparação a contento é condição necessária para a realização da parte experimental pelo aluno, a qual deve abranger não apenas o roteiro, mas também a matéria referente ao tema do experimento. No entanto, a nota do pré-lab será apenas atribuída caso a parte experimental (simulação) seja realizada pelo aluno.

X. METODOLOGIA DE AVALIAÇÃO E CONTROLE DE FREQUÊNCIA

O desempenho do estudante será avaliado através de três (3) avaliações teóricas e uma (1) avaliação de laboratório. A média da disciplina é calculada da seguinte forma: NOTA = $0.8 \times (P1+P2+P3)/3 + 0.2 \times L$; em que Pi é a avaliação teórica i (i = 1, 2, 3, 4); L é a avaliação de laboratório; e NOTA é a nota da disciplina.

As avaliações teóricas serão disponibilizadas no ambiente moodle a partir das 8h/10h10min do respectivo dia e deverão ser entregues em um arquivo único no formato pdf, composto pela junção de fotografias da resolução das questões escritas a mão livre, em formato A4, também no moodle até as 10h10min/12h20min do mesmo dia. Havendo algum problema técnico que inviabilize o envio das respostas da avaliação, caberá ao professor a avaliação da justificativa e a decisão sobre a possibilidade de recuperação da nota através de avaliação substitutiva. As avaliações possuem conteúdo cumulativo.

As avaliações teóricas serão disponibilizadas no ambiente moodle e deverão ser entregues, em um arquivo único no formato pdf, composto pela junção de fotografias da resolução das questões, escritas a mão livre, em formato A4, também no moodle. Havendo algum problema que inviabilize o envio das respostas da avaliação o estudante deverá contactar o professor posteriormente para definição da forma de recuperação.

Todas as avaliações são expressas em notas fracionadas por 0,5 pontos de acordo com a Resolução 17 do Conselho Universitário de 30 de setembro de 1997.

Em caso de apresentação de justificativa, devidamente aprovada pelo Departamento de Engenharia Elétrica e Eletrônica, para ausência em uma ou mais avaliações teóricas, será realizada uma única avaliação substitutiva ao final do semestre sobre todo o conteúdo da disciplina. A nota resultante substituirá as faltantes.

Se, ao final da disciplina, o aluno não atingir a nota mínima de 6,0, mas possuir média igual ou superior a 3,0 e frequência maior ou igual a 75%, o mesmo poderá realizar uma avaliação final referente a todo o conteúdo da disciplina. A nota da disciplina será a média entre a nota obtida ao longo do semestre e a avaliação final.

O controle da frequência da parte teórica será realizado pelo próprio estudante através da respectiva ferramenta no ambiente moodle. A frequência poderá ser implementada no período compreendido por 15 minutos antes e após o horário da aula.

As avaliações teóricas serão realizadas em: Primeira avaliação teórica: 16/03/2021; segunda avaliação teórica: 13/0410/2021; terceira avaliação teórica: 11/05/2021; avaliação substitutiva: 17/05/2021; avaliação final: 18/05/2021. As datas das avaliações podem ser alteradas no decorrer do semestre de acordo com a conveniência do processo pedagógico. O cronograma atualizado das atividades estará disponível no moodle.

Os demais procedimentos e regulamentos são os definidos pela Resolução número 17 do Conselho Universitário de 30 de setembro de 1997.

XI. LEGISLAÇÃO

Não será permitido gravar, fotografar ou copiar as aulas disponibilizadas no Moodle. O uso não autorizado de material original retirado das aulas constitui contrafação – violação de direitos autorais – conforme a Lei nº 9.610/98 –Lei de Direitos Autorais.

XI. REFERÊNCIAS

BIBLIOGRAFIA BÁSICA

- 1. Notas de aula
- 2. Notas de aula do Prof. Marcio Schneider: http://www.lci.ufsc.br/electronics/index7061.htm
- 3. Introduction to Physical Electronics, Bill Wilson: https://cnx.org/
- 4. Handbook of Operational Amplifiers: Applications, Texas Instruments: https://www.ti.com/lit/an/sboa092b/sboa092b.pdf?ts=1596559350762&ref_url=https%253A%252F%252Fwww.goo gle.com%252F

BIBLIOGRAFIA COMPLEMENTAR

- 5. Dispositivos Eletrônicos e Teoria de Circuitos, Boylestad e Naschelsky, Pearson.
 6. Microeletrônica, Sedra e Smith, editora Pearson, quinta edição, 2007
- 7. Microelectronic Circuit Design, Jaeger, McGraw-Hill.
- 8. Microelectronic Circuits and Devices, Horenstein, Prentice Hall.

Cronograma das Aulas Teóricas – 5202(B) e 5235(B)

Aula	Data	СН	Conteúdo	
1	01/02	2ha	Apresentação da disciplina	
2	02/02	2ha	Amplificador operacional ideal	
3	08/02	2ha	Amplificador operacional ideal	
4	09/02	2ha	Amplificador operacional ideal	
5	-	2ha	Atividade assíncrona: amplificador operacional ideal	
	15/02	-	Dia não letivo	
	16/02	-	Dia não letivo	
6	22/02	2ha	Amplificador operacional real	
7	23/02	2ha	Aplicações de amplificadores operacionais	
8	01/03	2ha	Diodos semicondutores (dispositivo)	
9	02/03	2ha	Diodos semicondutores (aplicações)	
10	08/03	2ha	Diodos semicondutores (circuitos)	
11	09/03	2ha	Diodos semicondutores(circuitos)	
12	-	2ha	Atividade assíncrona: diodo	
13	15/03	2ha	Exercícios	
14	16/03	2 ^{1/2} ha	Avaliação I (8h-10h10)	
15	22/03	2ha	Transistor bipolar de junção (dispositivo e modelo de grandes sinais)	
	23/03	-	Dia não letivo	
16	29/03	2ha	Transistor bipolar de junção (polarização)	
17	30/03	2ha	Transistor bipolar de junção (polarização)	
18	-	2ha	Atividade assíncrona: polarização do transistor de junção	
19	05/04	2ha	Transistor bipolar de junção (pequenos sinais)	
20	06/04	2ha	Transistor bipolar de junção (pequenos sinais)	
21	=.	2ha	Atividade assíncrona: modelo de pequenos sinais do transistor de junção	
22	12/04	2ha	Exercícios	
23	13/04	2 ^{1/2} ha	Avaliação II (8h-10h10)	
24	19/04	2ha	Transistor de efeito de campo (dispositivo)	
25	20/04	2ha	Transistor de efeito de campo (polarização)	
26	26/04	2ha	Transistor de efeito de campo (polarização)	
27	-	2ha	Atividade assíncrona: polarização do transistor de efeito de campo	
28	27/04	2ha	Transistor de efeito de campo (pequenos sinais)	
29	03/05	2ha	Transistor de efeito de campo (pequenos sinais)	
30	-	2ha	Atividade assíncrona: modelo de pequenos sinais do transistor de efeito de campo	
31	04/05	2ha	Funções lógicas CMOS	
32	10/05	2ha	Exercícios	
33	11/05	2 ^{1/2} ha	Avaliação III (8h-10h10)	
34	17/05	2 ^{1/2} ha	Avaliação substitutiva (10h10-12h20)	
35	18/05	2½ha	Recuperação (8h-10h10)	

Esse cronograma é apenas uma previsão inicial da alocação dos diversos temas ao longo do semestre letivo e pode ser alterado em função das necessidades ou interesses da turma ou do professor.

ha: hora-aula

Cronograma das Aulas Práticas – turma 5202(B)

Aula	Data	СН	Conteúdo	
1	05/02	0ha	Apresentação da disciplina; tutorial simulador LTSPICE	
2	12/02	3ha	EXP 01: Resposta em frequência do inversor e integrador	
3	19/02	3ha	EXP 02: Não-idealidades do amplificador operacional	
4	26/02	3ha	EXP 03: Slew-rate e ganho de malha aberta do amplificador operacional	
5	05/03	3ha	EXP 04: Característica I-V dos diodos/ circuitos básicos a diodos	
6	12/03	3ha	EXP 05: Retificador de meia onda (baixa tensão)	
7	19/03	3ha	EXP 06: Regulador de tensão a Zener	
8	26/03	3ha	EXP 07: Características estáticas BJT	
	02/04	-	Dia não letivo	
9	09/04	3ha	EXP 08: Circuitos de polarização	
10	16/04	3ha	EXP 09: Amplificador emissor-comum	
11	23/04	3ha	EXP 10: Amplificador fonte-comum	
12	30/04	3ha	EXP 11: Inversores lógicos a MOSFET	
13	07/05	3ha	EXP 12: Amplificador diferencial	
14	14/05	0ha	Recuperação de 1 (um) experimento	

Esse cronograma é apenas uma previsão inicial da alocação dos diversos temas ao longo do semestre letivo e pode ser alterado em função das necessidades ou interesses da turma ou do professor.

ha: hora-aula

Cronograma das Aulas Práticas – turma 5235(B)

Aula	Data	СН	Conteúdo	
1	02/02	0ha	Apresentação da disciplina; tutorial simulador LTSPICE	
2	09/02	3ha	EXP 01: Resposta em frequência do inversor e integrador	
	16/02	ı	Dia não letivo	
3	23/02	3ha	EXP 02: Não-idealidades do amplificador operacional	
4	02/03	3ha	EXP 03: Slew-rate e ganho de malha aberta do amplificador operacional	
5	09/03	3ha	EXP 04: Característica I-V dos diodos/ circuitos básicos a diodos	
6	16/03	3ha	EXP 05: Retificador de meia onda (baixa tensão)	
	23/03	ı	Dia não letivo	
7	30/03	3ha	EXP 06: Regulador de tensão a Zener	
8	06/04	3ha	EXP 07: Características estáticas BJT	
9	13/04	3ha	EXP 08: Circuitos de polarização	
10	20/04	3ha	EXP 09: Amplificador emissor-comum	
11	27/04	3ha	EXP 10: Amplificador fonte-comum	
12	04/05	3ha	EXP 11: Inversores lógicos a MOSFET	
13	11/05	3ha	EXP 12: Amplificador diferencial	
14	14/05	0ha	Recuperação de 1 (um) experimento	
	18/05	1	Não haverá aula	

Esse cronograma é apenas uma previsão inicial da alocação dos diversos temas ao longo do semestre letivo e pode ser alterado em função das necessidades ou interesses da turma ou do professor.

ha: hora-aula