PLANO DE ENSINO

1. Disciplina: EEL-7201 Aspectos Construtivos e Análise de Máquinas Elétricas

Disciplina optativa do currículo do curso

Número de semanas: 18 Total de horas/aula: 72

Pré-requisito: Conversão Eletromecânica de Energia B

2. Professor: Nelson SADOWSKI

3. Objetivos:

Aprendizado:

- 1. dos métodos de análise e de simulação de máquinas elétricas em regime transitório e em regime permanente;
- 2. de noções de aspectos construtivos e concepção de máquinas elétricas;

4. Conteúdo programático:

- 1. Introdução
- 1.1) Revisão de conceitos básicos: energia em circuitos magnéticos, relutâncias, indutâncias, etc.
 - 1.2) Equações de tensão e torque da máquina elétrica básica
 - 1.3) Equações de tensão e torque da máquina elétrica básica de dois enrolamentos
 - 1.4) Equação do movimento mecânico da máquina elétrica básica
 - 1.5) Estudo da dinâmica de um eletroímã: um exemplo de aplicação
- 2. Teoria das máquinas de corrente contínua
 - 2.1) Máquina de corrente contínua elementar
 - 2.2) Equações de tensão e torque
 - 2.3) Tipos de máquina de corrente contínua
 - Excitação independente
 - Excitação em derivação
 - Excitação série
 - Excitação composta
 - 2.4) Características dinâmicas do motor de corrente contínua
- 3. Teoria de sistemas de referência
 - 3.1) Equações de transformação; mudança de variáveis

- 3.2) Transformação das variáveis do circuito estacionário para o circuito de referência arbitrário
 - Elementos resistivos
 - Elementos indutivos
 - Elementos capacitivos
 - 3.3) Transformação de um conjunto de variáveis balanceadas
 - 3.4) Relações fasoriais balanceadas em regime permanente

4. O transformador

- 5. Teoria das máquinas de indução trifásicas simétricas
 - 5.1) Aspectos construtivos do motor de indução trifásico de pequeno porte
 - 5.2) Equações de tensão em variáveis da máquina
 - 5.3) Equações de transformação para circuitos do rotor
 - 5.4) Equações de tensão em um sistema de referência arbitrário
 - 5.5) Equação do torque em variáveis do sistema de referência arbitrário
 - 5.6) Análise da operação em regime permanente
 - 5.7) Obtenção experimental dos parâmetros do motor de indução
 - 5.8) Estudo do comportamento dinâmico do motor de indução trifásico
- 6. Teoria das máquinas síncronas
 - 6.1) Aspectos construtivos
 - 6.2) Equações de tensão e torque em variáveis da máquina
- 6.3) Equações de tensão em variáveis relativas a um sistema de referência fixo no rotor Equações de Park
 - 6.4) Equações de torque em variáveis do sistema de referência fixo no rotor
 - 6.5) Análise da operação em regime permanente

5. Metodologia

A disciplina será ministrada em sala de aula utilizando além do quadro negro recursos audiovisuais. Um programa de computador especialmente desenvolvido pelo professor e alunos para as aulas de máquinas elétricas é igualmente suporte para as análises de funcionamento transitório e em regime permanente dos diferentes atuadores eletromagnéticos. Além das aulas expositivas atividades de laboratório visam o estudo experimental das diferentes máquinas elétricas estudadas no curso.

6. Avaliação

O aluno será avaliado por provas e trabalhos distribuídos ao longo do semestre. A média final será composta pela média aritmética das provas e dos trabalhos, média esta que será ponderada pela freqüência e participação do aluno nas atividades didáticas.

Será aprovado o aluno que satisfizer as duas condições:

- a) obtiver média final maior ou igual a 6,0.
- b) obtiver frequência superior ou igual a 75%.

Terá direito à recuperação o aluno que:

- a) obtiver média final inferior a 6,0 mas maior ou igual a 3,0.
- b) obtiver frequência superior ou igual a 75%.

A prova de recuperação será relativa a toda a matéria. A média final da disciplina, para aqueles alunos que ficarem em recuperação, será a média entre a nota da prova de recuperação e a média obtida durante o semestre normal.

6. Bibliografia

- [1] Sadowski, N., Máquinas Elétricas (Transitório, Regime Permanente e Acionamento), Florianópolis, 2012.
- [2] Krause, P.C., Wasynczuk, O., Sudhoff S.D., Analysis of electric machinery and drive systems, IEEE Press/Willey Interscience, Piscataway, NJ, USA, 2002.
- [3] Jones, C.V., The unified theory of electrical machines, Butterworths, London, 1967.
- [4] Toliyat, H. A., Campbell, S. G., DSP Based electromechanical motion control, CRC Press, Boca Raton, USA, 2004.
- [5] Gieras, J. F., Wing, M., Permanent magnet motor technology, Marcel Dekker, New York, USA, 2002.
- [6] Mohan, N., Electric drives principles, University of Minnesota Tutorial, USA, 2004.
- [7] Bose, B. K., Power electronics and AC drives, Prentice-Hall, Englewood Cliffs, USA, 1986.
- [8] T.J.E. Miller, Brushless permanent-magnet and reluctance motor drives, Clarendon Press, Oxford, 1989.
- [9] Hamdi, E.S., Design of small electrical machines, John Wiley & Sons, Chichester, 1994.
- [10] Lipo, T.A., Introduction to AC machine design, Vol. 1, University of Wisconsin-Madison, 1996.

Cronograma Estabelecido no Plano de Ensino Semestre 2020/1

EEL7201 - Aspectos Construtivos e Análise de Máquinas Elétricas Prof. Nelson SADOWSKI

Data	Conteúdo Programático
05/mar	Introdução à disciplina
09/mar	Cap. I - Revisão de conceitos básicos (introdução)
12/mar	Cap. I - Equações de tensão e torque das máquina elétricas básicas
16/mar	Cap. I - Equação mecânica. Análise de disposit.de relutância e a ímãs
19/mar	Cap. I - Exemplos de máquinas elementares
23/mar	Dia não letivo
26/mar	Cap. II - Máquina de corrente contínua elementar-Eq.tensão e torque
30/mar	Cap. II - Máq. Corr. Contínua prática-diferentes excitações
02/abr	Cap. II - Controle de posição e velocidade da Máquina de corrente contínua
06/abr	Revisão para prova
09/abr	Prova I
13/abr	Cap. III - Teoria de sistemas de referência: primeira parte
16/abr	Cap. III - Teoria de sistemas de referência: segunda parte
20/abr	Dia não letivo
23/abr	Cap. III - Teoria de sistemas de referência: terceira parte
27/abr	Cap. III - Circuitos elétricos acoplados: Transformador
30/abr	Revisão para prova
04/mai	Prova II
07/mai	Cap. IV - Motor de indução trifásico: enrol. polifásicos, distribuição de FMM e Fluxo
11/mai	Cap. IV - Motor de indução trifásico: Aspectos constr.
	Cap. IV - Equações de tensão e torque em variáveis da
14/mai	máquina
18/mai	Cap. IV - Equações de tensão e torque em um sistema de referência arbitrário
21/mai	Cap. IV - Análise da operação em regime permanente do motor de ind.trifásico
25/mai	Cap. IV - Simulações de motores de indução trifásicos
28/mai	Cap. V - Máquinas síncronas: introd. e aspectos construtivos
01/jun	Cap. V - Equações de tensão e torque em variáveis de máquina (abc)
04/jun	Cap. V - Equações de tensão e torque em um sistema de ref. fixo no rotor
08/jun	Cap. V - Análise da operação em regime permanente da máq. síncrona
11/jun	Dia não letivo
15/jun	Aula adicional sobre controle vetorial de Motores de Indução Trifásicos
18/jun	Aula adicional sobe Brushless DC Motors
22/jun	Confecção de trabalho pelos alunos
26/jun	Confecção de trabalho pelos alunos
03/jul	Entrega dos trabalhos pelos alunos
06/jul	Divulgação das notas antes da prova de recuperação
09/jul	Prova de recuperação
13/jul	Divulgação das notas finais

