Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica e Eletrônica

Disciplina: Introdução à Codificação - EEL 7416 e Códigos Corretores de Erros - EEL510276

Carga horária: 72 horas-aula teóricas

Período: 2019/2

Professor: Bartolomeu F. Uchôa Filho

Informações

Turma: 09235

Professor: Bartolomeu F. Uchôa Filho

Horários: tercas-feiras 13h30-15h10 e sextas-feiras 14h20-16h00

Local: sala PG 001

E-mail de contato do professor: uchoa@eel.ufsc.br Página do professor: http://bart.uchoa.prof.ufsc.br/

Ementa

Introdução à Teoria da Informação e Codificação. Códigos de bloco. Códigos cíclicos. Códigos convolucionais. Códigos turbo. Códigos LDPC.

Objetivos

Compreender os princípios fundamentais sobre códigos corretores de erros, tanto os algébricos (Hamming, etc.) quanto os sobre grafos (Turbo e LDPC). Desenvolver competências e habilidades para projetar e analisar códigos corretores de erros. Aprender diferentes decodificadores e suas implementações.

Pré-Requisitos

Para o adequado aproveitamento dos conteúdos abordados, alguns temas matemáticos como conceitos de Álgebra Abstrata (grupos, anéis, campos), teoria de probabilidades e combinatória são introduzidos na própria disciplina. Formalmente, é necessário que o estudante tenha sido aprovado em EEL7062 – Princípios de Sistemas de Comunicação.

Conteúdo Programático

1. Introdução à Teoria da Informação e Codificação

- 1.1. Uma Medida de Informação
- 1.2. Entropia e Taxa de Informação
- 1.3. Fontes Discretas Sem Memória
- 1.4. Canais Discretos Sem Memória
- 1.5. Entropias *A Priori* e *A Posteriori*
- 1.6. Informação Mútua: Definição
- 1.7. Informação Mútua: Propriedades
- 1.8. Capacidade de um Canal Discreto
- 1.9. Os Teoremas de Shannon
 - 1.9.1. Teorema da Codificação de Fonte
 - 1.9.2. Capacidade de Canal e Codificação
 - 1.9.3. Teorema da Codificação de Canal
- 1.10. Espaços de Sinais e o Teorema da Codificação de Canal
 - 1.10.1. Capacidade do Canal Gaussiano
- 1.11. Codificação para Controle de Erros
- 1.12. Limites da Comunicação e Suas Consequências

2. Códigos de Bloco

2.1. Codificação para Controle de Erros

- 2.2. Detecção e Correção de Erros
 - 2.2.1. O Código de Repetição
- 2.3. Códigos de Bloco: Introdução e Parâmetros
- 2.4. O Espaço Vetorial sobre o Campo Binário
 - 2.4.1. Subespaços Vetoriais
 - 2.4.2. Subespaço Dual
 - 2.4.3. Forma Matricial
 - 2.4.4. Matriz do Subespaço Dual
- 2.5. Códigos de Bloco Lineares
 - 2.5.1. Matriz Geradora, G
 - 2.5.2. Códigos de Bloco em Forma Sistemática
 - 2.5.3. Matriz de Verificação de Paridade, H
- 2.6. Detecção de Erros por Síndrome
- 2.7. Distância Mínima de um Código de Bloco
 - 2.7.1. Distância Mínima e a Estrutura da Matriz H
- 2.8. Capacidade de Correção de Erros de um Código de Bloco
- 2.9. Detecção por Síndrome e o Arranjo Padrão
- 2.10. Códigos de Hamming
- 2.11. Correção de Erros Direta e Requisição de Repetição Automática

3. Códigos Cíclicos

- 3.1. Descrição
- 3.2. Representação Polinomial das Palavras-Código
- 3.3. Gerador Polinomial de um Código Cíclico
- 3.4. Códigos Cíclicos na Forma Sistemática
- 3.5. Matriz Geradora de um Código Cíclico
- 3.6. Cálculo de Síndrome e Detecção de Erros
- 3.7. Decodificação de Códigos Cíclicos
- 3.8. Exemplo: CRC para o Padrão Ethernet

4. Códigos Convolucionais

- 4.1. Circuitos Sequenciais Lineares
- 4.2. Códigos e Codificadores Convolucionais
- 4.3. Descrição no Domínio da Transformada D
- 4.4. Representação do Codificador Convolucional
 - 4.4.1. Representação das Conexões
 - 4.4.2. Representação por Diagrama de Estados
 - 4.4.3. Representação por Treliças
- 4.5. Códigos Convolucionais na Forma Sistemática
- 4.6. Estrutura Geral das Respostas ao Impulso Finita e Infinita (FSSMs)
- 4.7. Matriz Função de Transferência de Estados: Cálculo da Função de Transferência
- 4.8. Relação Entre as Formas Sistemáticas e Não Sistemáticas
- 4.9. Propriedades de Distâncias de Códigos Convolucionais
- 4.10. Distância Livre Mínima de um Código Convolucional
- 4.11. Detecção de Máxima Verossimilhança
- 4.12. Decodificação de Códigos Convolucionais: o Algoritmo de Viterbi
- 4.13. Diagrama de Estados Modificado e Estendido
- 4.14. Análise de Probabilidade de Erros de Códigos Convolucionais
- 4.15. Decisões Suave e Abrupta
- 4.16. Códigos Convolucionais Puncionados e Esquemas Compatíveis em Taxa

5. Códigos Turbo

- 5.1. Um Codificador Turbo
- 5.2. Decodificação de Códigos Turbo
- 5.3. Fontes de Markov e Canais Discretos
- 5.4. O Algoritmo BCJR: Codificação de Treliça e Canais Discretos sem Memória
- 5.5. Cálculo Interativo de Coeficiente
- 5.6. O Algoritmo MAP BCJR e a LLR
- 5.7. Decodificação Turbo
- 5.8. Métodos de Construção para Códigos Turbo

- 5.8.1. Entrelaçadores
- 5.8.2. Entrelaçadores de Bloco
- 5.8.3. Entrelaçadores Convolucionais
- 5.8.4. Entrelaçadores Aleatórios
- 5.8.5. Métodos de Concatenação de Códigos
- 5.8.6. Desempenho de Códigos Turbo em Função do Tamanho e do Tipo de Entrelaçador
- 5.9. Outros Algoritmos de Decodificação para Códigos Turbo
- 5.10. Gráficos EXIT para Códigos Turbo

6. Códigos de Verificação de Paridade de Baixa Densidade (LDPC)

- 6.1. Diferentes Formas Sistemáticas de Um Código de Bloco
- 6.2. Descrição de Códigos LDPC
- 6.3. Construção de Códigos LDPC
 - 6.3.1. Códigos LDPC Regulares
 - 6.3.2. Códigos LDPC Irregulares
 - 6.3.3. Decodificação de Códigos LDPC: O Grafo de Tanner
- 6.4. O Algoritmo Soma-Produto
- 6.5. Algoritmo Soma-Produto para Códigos LDPC: Um Exemplo
- 6.6. Simplificações no Algoritmo Soma-Produto
- 6.7. Um Decodificador Logaritmo para LDPC
- 6.8. Gráficos EXIT para Códigos LDPC
- 6.9. Códigos Fontanais e LT
 - 6.9.1. Introdução
 - 6.9.2. Códigos Fontanais
 - 6.9.3. Códigos Lineares Aleatórios
 - 6.9.4. Códigos de Transformada Luby

Sistema de Avaliação

O desempenho do estudante será avaliado através da média de três (3) avaliações teóricas e um trabalho computacional, todas com iguais pesos.

Se, ao final da disciplina, o aluno não atingir a nota mínima de 6,0, mas possuir média igual ou superior a 3,0 e frequência maior ou igual a 75%, o mesmo poderá realizar uma prova de recuperação referente a todo o conteúdo da disciplina. A nota final será a média entre a nota obtida ao longo do semestre e a nota da recuperação.

Procedimentos e Regulamentos

Os procedimentos e regulamentos são os definidos pela Resolução número 17 do Conselho Universitário de 30 de setembro de 1997.

Datas das Avaliações

As datas das avaliações e recuperação serão definidas ao longo do semestre, de acordo com o ritmo das aulas e sempre com a aprovação da maioria dos alunos matriculados.

Bibliografia Básica

1. Jorge C. Moreira e Patrick G. Farrel, Essentials of Error-Control Coding, Wiley, 2006. ISBN-13 978-0-470-02920-6 (HB), ISBN-10 0-470-02920-X (HB)

Bibliografia Complementar

- T. K. Moon, Error Correction Coding: Mathematical Methods and Algorithms, Wiley, 2005. ISBN 978-0471648000
- S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications, 2nd. Ed., Prentice-Hall, 2004.