

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

CAMPUS UNIVERSITÁRIO REITOR JOÃO DAVID FERREIRA LIMA - TRINDADE CEP: 88040-900 - FLORIANÓPOLIS - SC TELEFONE (048) 3721-2262 - FAX (048) 3721-9280

Plano de Ensino

Identificação

Código: EEL 7303

Nome: Circuitos Eletrônicos Analógicos (teoria e laboratório)

Turmas: 06235

Carga horária: 72 h.a. (60 -teoria, 12 -prática)

Período: 2019-2

Cursos: Engenharia Elétrica, Engenharia Eletrônica
 Prof. Jader A. De Lima (jader.lima@eel.ufsc.br)

Atendimento presencial: 3ª feiras, 10:00h – 11:15h 6ª feiras, 8:45h – 10:00h

Monitoria: Não haverá nesse semestre.

Ementa:

Amplificadores multi-estágios; ruído em circuitos analógicos; amplificadores diferenciais; espelhos de corrente; estágios de saída e amplificadores de potência; resposta em frequência de amplificadores; referências de corrente e tensão; circuitos com amplificadores operacionais; circuitos realimentados; osciladores.

Objetivos:

- Geral: Desenvolver habilidades de análise e de síntese de circuitos eletrônicos analógicos
- Específicos:
 - Introduzir noções elementares sobre o tratamento de sinais em circuitos eletrônicos, tais como distorção harmônica e ruído intrínseco.
 - Familiarizar o aluno com blocos elementares que compõem circuitos para processamento da informação analógica, tais como espelhos de corrente, amplificadores diferenciais, amplificadores operacionais, referências de tensão tipo bandgap e osciladores.
 - Introduzir modelos de componentes dependentes da frequência e seus efeitos em amplificadores.
 - Relacionar a importância da polarização dos componentes não-lineares no desempenho do circuito, com ênfase na largura de banda, no consumo, na linearidade e na robustez ao ruído e interferência.
 - Revisar e aplicar os conceitos de realimentação negativa na análise e no projeto de amplificadores.
 - o Aplicar os conceitos de realimentação

Serviço Público Federal UNIVERSIDADE FEDERAL DE SANTA CATARINA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

CAMPUS UNIVERSITÁRIO REITOR JOÃO DAVID FERREIRA LIMA - TRINDADE

CEP: 88040-900 - FLORIANÓPOLIS - SC

TELEFONE (048) 3721-2262 - FAX (048) 3721-9280

Conteúdo programático:

Amplificador a BJT/MOS (estágios simples)	
Distorção e Ruído Intrínseco em Amplificadores	
Amplificador BJT/MOS Diferencial	
Amplificadores de Potência (classe A/B/AB)	
Espelhos de Corrente BJT/MOS	
Referência de Tensão/Corrente	
Resposta em Frequência de Amplificadores	
Amplificador Operacional	
Sistemas Realimentados	
Osciladores	

Serviço Público Federal

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

CAMPUS UNIVERSITÁRIO REITOR JOÃO DAVID FERREIRA LIMA - TRINDADE CEP: 88040-900 - FLORIANÓPOLIS - SC TELEFONE (048) 3721-2262 - FAX (048) 3721-9280

Metodologia:

Instrumentos metodológicos:

A disciplina compreende aulas teóricas e atividades em laboratório. O conteúdo teórico será desenvolvido por meio de aulas expositivas e seminários, com auxílio de recursos multimídia, vídeo-aulas realizadas pelo professor e notas de aula em reposítório de acesso geral.

As atividades de laboratório compreenderão sessões experimentais onde o aluno será confrontado com problemas práticos e deverá buscar soluções no contexto da disciplina. Deve-se observar a integração que deverá haver por parte dos alunos entre as atividades em sala de aula e no laboratório.

Pressupostos da metodologia:

Assiduidade: é obrigatória a presença do aluno em pelo menos 75% das atividades da disciplina (teoria e laboratório). As aulas terão início nos referidos horários, pontualmente.

Fórum da Disciplina: Extremamente recomendado que os alunos utilizem essa ferramenta para a colocação de dúvidas técnicas, permitindo uma maior disseminação das respostas e comentários.

Avaliação:

Instrumentos de avaliação:

O desempenho do estudante será avaliado através de provas e tarefas teóricas e experimentais.

A nota final do semestre será composta pela média ponderada das notas das avaliações parciais (A1 e A2) e das tarefas de laboratório (L1), calculadas a partir da seguinte fórmula: NF (nota final) = $(0.35 \times A1) + (0.40 \times A2) + (0.25 \times L1)$.

Avaliação A1 corresponde a uma prova individual. Avaliação A2 será composta por uma nota de prova individual P2 (peso 50%) e uma nota de projeto NP (peso 50%), sendo esse último realizado em grupo de 2 alunos (número máximo), sobre os temas apresentados no Anexo I. No caso de uma turma com número ímpar de alunos, será permitido <u>um único</u> grupo de 3 alunos para a realização do projeto. Quando da apresentação do projeto, o professor poderá arguir os alunos individualmente, razão pela qual a nota NP poderá ser atribuída diferentemente aos membros da equipe.

Os experimentos de laboratório – e respectivos relatórios - serão realizados em grupos de 2 alunos (número máximo). Cada aluno deverá entregar ao professor o Pré-Laboratório individual devidamente realizado, no início da aula de laboratório, como condição necessária para a realização da parte experimental, o qual comporá em 15% a nota final do relatório, constatando-se que o aluno tenha terminado o experimento. A folha com os dados experimentais coletados deverá ser apresentada pela equipe ao final de cada experimento para visto do professor, e deverá estar contida no relatório, como apêndice. O relatório de cada experimento, por equipe, deverá ser entregue na aula do experimento seguinte, impreterivelmente; caso contrário, não será considerado.

A prova de recuperação abrange a matéria total do semestre.

UNIVERSIDADE FEDERAL DE SANTA CATARINA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

CAMPUS UNIVERSITÁRIO REITOR JOÃO DAVID FERREIRA LIMA - TRINDADE

CEP: 88040-900 - FLORIANÓPOLIS - SC

TELEFONE (048) 3721-2262 - FAX (048) 3721-9280

Cronograma:

Previsão de aulas teóricas

Data		Assunto
05/08	seg	Amplificador a BJT/MOSFET- Distorção Harmônica.
12/08	seg	Amplificador a BJT/MOSFET(multi-estágios)
19/08	seg	Referência de Tensão/Corrente
26/08	seg	Amplificador a BJT/MOSFET (ruído intrínseco)
02/09	seg	Entrega Documental Inicial do projeto. Amplificador Diferencial.
09/09	seg	Amplificador Diferencial. Exercícios.
16/09	seg	Amplificadores de Potência (classe A)
23/09	seg	Prova 1
30/09	seg	Amplificadores de Potência (classe B e classe AB).
07/10	seg	Entrega Documental Intermediária do projeto. Espelhos/Fontes de Corrente.
14/10	seg	Resposta em Frequência
21/10	seg	Sistemas Realimentados
28/10	seg	Dia não letivo
04/11	seg	Sistemas Realimentados (Exercícios)
11/11	seg	Amplificador Operacional (projeto e utilização).
18/11	seg	Osciladores
25/11	seg	Prova 2
27/11	qua	Apresentação dos Projetos (Seminários) Parte 1
29/11	sex	Apresentação dos Projetos (Seminários) Parte 2
02/12	seg	Prova de Recuperação

Previsão de aulas laboratoriais

Data		Assunto
09/08	sex	Não haverá aula
16/08	sex	Lab 1: Amplificador a 2 estágios
23/08	sex	Lab 2: Referência de Tensão (bandgap)
30/08	sex	Lab 3: Amplificador Diferencial
06/09	sex	Lab 4: Estágios de Saída
13/09	sex	Lab 5: Amplificador de Potência
20/09	sex	Lab 6: Resposta em frequência de um amplificador (I)
27/09	sex	Lab 7: Resposta em frequência de um filtro passa-faixas a opamp (II)
04/10	sex	Lab 8 : Espelhos de Corrente
11/10	sex	Lab 9: Amplificador operacional CMOS (parte 1)
18/10	sex	Lab 9: Amplificador operacional CMOS (parte 2)
25/10	sex	Não haverá aula
01/11	sex	Lab 10: Oscilador a Deslocamento de Fase
08/11	sex	Lab 11: Filtro Ativo
15/11	sex	Dia não letivo
22/11	sex	Recuperação de um (1) experimento de laboratório

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

CAMPUS UNIVERSITÁRIO REITOR JOÃO DAVID FERREIRA LIMA - TRINDADE CEP: 88040-900 - FLORIANÓPOLIS - SC TELEFONE (048) 3721-2262 - FAX (048) 3721-9280

Bibliografia:

- B. Razavi, Fundamentals of Microelectronics, J. Wiley, 2006
- A. S. Sedra and K. C. Smith, Microelectronic Circuits, 6th ed., Oxford, 2009.
- R. Boylestad e L. Nashlsky, Dispositivos Eletrônicos e Teoria de Circuitos, 11ª Edição, Pearson
- P.R. Gray, P. J. Hurst, S. H. Lewis and R. G. Meyer, "Analysis and Design of Analog Integrated Circuits", Fourth Edition, J. Wiley and Sons, 2001.
- D. A. Johns and K. Martin, Analog Integrated Circuit Design, J. Wiley and Sons, 1997.

NOTAS DE AULAS (Módulos):

https://drive.google.com/open?id=0B5OZPh4KR 74YjJwRXFreFVOQW8

LISTAS DE EXERCÍCIOS:

https://drive.google.com/folderview?id=0B5OZPh4KR_74fllnV2ZLU3p0YVNoTjhRZWttWVFMOE9OdWNiQTJHblJPVUF4YkdBaTNtcjg&usp=sharing

ROTEIROS DE LABORATÓRIO (+ Procedimentos de Laboratório):

https://drive.google.com/drive/folders/1yUhWlooEcJRZIvpZFmWyJ9rQdzdiDRaR

VÍDEO-AULAS

http://youtu.be/NB-Kb_ZxVEQ

https://www.youtube.com/watch?v=F3Y6Urntvxg

https://youtu.be/SaaOotil-TY

https://youtu.be/crz1 6wmXRk

http://youtu.be/yRc5Ks4skwl

http://youtu.be/AAA8hswed1k

https://youtu.be/he26uhlrX o

http://youtu.be/p8tkvG9KqHE

http://youtu.be/6ioQ8r 1aqo

http://youtu.be/XjBq4-Be0t4

http://youtu.be/ IO ECNjE3A

http://youtu.be/AIUJ6plKedE

http://youtu.be/2h1Hzeg0XNs

http://youtu.be/Ow1m_Js-r_c

Serviço Público Federal UNIVERSIDADE FEDERAL DE SANTA CATARINA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

CAMPUS UNIVERSITÁRIO REITOR JOÃO DAVID FERREIRA LIMA - TRINDADE

CEP: 88040-900 - FLORIANÓPOLIS - SC

TELEFONE (048) 3721-2262 - FAX (048) 3721-9280

SIMULADOR ELÉTRICO (versões gratuitas): *Altamente recomendado que o mesmo seja utilizado, como ferramenta de aprendizado do curso.*

utilizado, como ferramenta de aprendizado do curso.
LTspice
http://www.linear.com/designtools/software
Pspice:

http://pspice.softonic.com.br/download

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

CAMPUS UNIVERSITÁRIO REITOR JOÃO DAVID FERREIRA LIMA - TRINDADE CEP: 88040-900 - FLORIANÓPOLIS - SC TELEFONE (048) 3721-2262 - FAX (048) 3721-9280

ANEXO I

TEMAS DE PROJETO

- 1. Oscilador a Cristal de Micropotência
- 2. Oscilador linear (senoidal) controlado por tensão (VCO)
- 3. Regulador linear de tensão Low-Dropout (LDO)
- 4. Conversor DC-DC chaveado abaixador de tensão tipo "buck" (com feedback)
- 5. Amplificador com controle de ganho automático (com detector de amplitude)
- Conversor DC-DC chaveado elevador de tensão tipo "booster" (com indutor e feedback)
- 7. Conversor DC/DC a capacitores chaveados (charge-pump)
- 8. Conversor A/D tipo "pipeline"
- 9. Conversor A/D tipo "dual-slope" (com interface digital)
- 10. Conversor A/D tipo "flash"
- 11. Conversor D/A tipo "segmentado"
- 12. Amplificador de sinais biomédicos EEG
- 13. Estetoscópio eletrônico
- 14. Controle de velocidade motores CC via modulação PWM
- 15. Medidor eletrônico de energia elétrica
- 16. Amplificador de Áudio Classe-D em Ponte-H
- 17. Amplificador de Isolamento
- 18. Amplificador de Áudio Valvulado
- 19. Sensor de Temperatura Integrado
- 20. Fonte de Corrente Ajustável (0 20A)
- 21. Gerador de Formas de Onda (Senoidal, Triangular, Quadrada)
- 22. Proteção/Controle para Iluminação Pública LED
- 23. Amplificador Operacional MOS Integrado
- 24. Afinador de Violão
- 25. Circuito de detecção de infravermelho
- 26. Circuito de detecção de nível de água

Quanto aos tópicos de projeto, não será possível que dois ou mais grupos escolham o mesmo tema. Assim, o procedimento para a definição do tópico será "first-come, first-served". No caso, o grupo (já previamente constituído) deverá enviar sua opção preferencial (mais duas opções secundárias) de tema através de email ao endereço jader.lima@eel.ufsc.br, necessariamente, a partir de 10:00h de 13/08/2019. Apenas uma mensagem por grupo será aceita; caso contrário, mensagens de diferentes membros do mesmo grupo serão sumariamente desconsideradas. O limite para escolha do tema é 26/08/2019, às 18:00h, após o qual os temas serão sorteados e as equipes definidas aleatoriamente.

Obs: Alunos que já cursaram a disciplina não poderão repetir temas anteriormente por eles escolhidos.

SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

CAMPUS UNIVERSITÁRIO REITOR JOÃO DAVID FERREIRA LIMA - TRINDADE CEP: 88040-900 - FLORIANÓPOLIS - SC TELEFONE (048) 3721-2262 - FAX (048) 3721-9280

Cronograma do Projeto:

- 1) Para a Entrega da Documentação Inicial do projeto, o grupo deverá identificar uma aplicação específica para o projeto a ser desenvolvido. Deverá propor especificações elétricas preliminares, definindo parâmetros como tensão de alimentação, frequência de operação, tensão/corrente/potência de entrada/saída, consumo máximo de potência, eficiência, linearidade (THD), precisão, intervalo de temperatura, etc. Ainda, propor uma arquitetura inicial do circuito, assim como o simulador a ser utilizado. O arquivo a ser entregue será composto no máximo por 6 slides técnicos, e enviado por email até 10h de 02/09. Uma análise do material será feita pelo professor e comunicada à equipe.
- 2) Para a Entrega da Documentação Intermediária, o grupo deverá apresentar os cálculos básicos de projeto, incluindo o dimensionamento dos componentes a serem utilizados. Resultados iniciais de simulação, mostrando a funcionalidade do circuito em condições nominais de parâmetros, são esperados. O arquivo a ser entregue será enviado por email até 10h de 07/10. Uma análise do material será feita pelo professor e comunicada à equipe.
- 3) Para a Apresentação do Projeto, o grupo deverá apresentar os resultados finais de dimensionamento do projeto e resultados de simulação que efetivamente comprovem a funcionalidade do circuito em situação nominal, assim como em condições de descasamento de componentes críticos, variações de temperatura, ruídos na alimentação, etc., ou seja, cenários que possam afetar o desempenho do circuito "no campo" devem ser explorados. Um confronto entre a tabela de especificações iniciais e os valores obtidos por simulação (consumo máximo de potência, eficiência, linearidade (THD), precisão, intervalos de utilização, etc...), deve ser apresentado, calculando os erros relativos e os pontos mais sensíveis de projeto. Analisar o que poderia ser melhorado ou re-proposto no caso de um re-projeto. Como relatório, o grupo deverá preparar um arquivo Power Point com o conteúdo acima, de maneira detalhada, e disponibilizado ao professor até 10:00h do dia 27/11, impreterivelmente. Um material resumido, a partir do arquivo PPT descrito, deverá ser utilizado para a apresentação final, que terá uma duração máxima de 20 minutos, sem limitação de slides.

Convém salientar que a pontualidade na apresentação final é também critério de avaliação. Portanto, é sugerido ao grupo um ensaio antes da apresentação do seminário.