

Eletrônica de Potência I

Código: EEL 7074 http://moodle.ufsc.br (Os alunos devem verificar SEMPRE o Moodle da disciplina)

Professores Teoria: Marcelo Lobo Heldwein (marcelo.heldwein@ufsc.br)

Laboratório: André Luís Kirsten (kirsten.andre@ufsc.br)

Samir Ahmad Mussa (samir@inep.ufsc.br)

Objetivos da disciplina

Apresentar dispositivos semicondutores de potência comumente utilizados em processos de conversão estática de energia. Capacitar o aluno a analisar circuitos elétricos que integrem dispositivos semicondutores de potência não controlados, semi-controlados e totalmente controlados, bem como projetar sistemas de resfriamento de calor para tais dispositivos. Apresentar os conceitos básicos de conversão estática de energia em tais circuitos e de Eletrônica de Potência em geral. Introduzir os fenômenos de comutação em dispositivos semicondutores de potência.

Créditos

5 créditos (3 teoria / 2 prática) – Total: 90 horas-aula

Teoria: 2 aulas teóricas + 1 aula exercício

Conteúdo Programático

- 1. Semicondutores de potência (diodos, tiristores e transistores): características estática e dinâmica e cálculo térmico;
- 2. Retificadores a diodos;
- 3. Retificadores a tiristores e inversores não autônomos;
- 4. Estudo da comutação;
- 5. Princípios de conversores duais e de cicloconversores;
- 6. Princípios de gradadores;
- 7. Princípios de conversores CC-CC comutados em alta frequência;
- 8. Princípios de inversores comutados em alta frequência.

Datas

Início: **05/08/2019** — Fim: **06/12/2019**

Aulas teóricas

(1 x 3 horas/semana)

Sextas-feiras, 09:10 - 11:50 / Sala CTC 305

Comunicação

Preferencialmente pelo Moodle ou e-mail

Avaliação

a) Parte teórica: 2 provas: NT1, NT2 + 7 exercícios entregues: NTE + 1 trabalho:

Notas: de 0,0 a 05,0 (com particionamento de, no máximo, 0,5)

b) Parte prática: 1 prova: NL

Média das avaliações (MA): MA = (NT1+NT2+NTE+NE/2+NL)/4,5

Obs.: A nota dos exercícios (NTE) só será computada aos alunos que tiverem atendido os critérios estipulados na atividade (ver Atividades da disciplina). Caso contrário, a

média será MA = (NT1+NT2+NTT+NL)/4. Critérios: Se: MA ≥ 6,0 => Aprovado

3,0 ≤ MA < 6,0 => Recuperação

MA < 3,0 => Reprovado

Avaliação final: Prova escrita (NR)

Critério: Média final com a avaliação final (MFR): MFR = (NR+MA)/2

Metodologia

As seguintes estratégias serão utilizadas durante as aulas:

- a) Exposição pelo professor: apresentação expositiva com explicações, demonstrações, ilustrações e uso de problemas para exemplificar a teoria discutida.
- b) Métodos de trabalho independente: os alunos desenvolverão tarefas dirigidas e orientadas pelo professor, principalmente com a realização de exercícios com foco na solução de problemas e com a realização de experimentos em laboratório.
- c) Projeto: investigação de um tema previamente selecionado incluindo seu planejamento, execução, coleta e organização de dados de fabricantes de dispositivos semicondutores, sistematização e apresentação dos resultados.

Atendimento

Professor: Segundas-feiras, das 16:00 às 18:00 horas (INEP).

Estagiário(s) de docência: a definir.

Monitoria

Não haverá neste semestre.

Datas e atividades da teoria

Data	Aula	Tópicos
09/08/2019	1	Introdução – Dispositivos semicondutores de potência
16/08/2019	2	Retificadores monofásicos a diodo – Cálculo térmico
23/08/2019	3	Retificadores monofásicos a diodo
30/08/2019	4	Retificadores trifásicos a diodo
06/09/2019	5	Retificadores trifásicos a diodo
13/09/2019	6	Retificadores controlados monofásicos

20/09/2019	7	Prova 1
27/09/2019	8	Retificadores controlados trifásicos
04/10/2019	9	Estudo da comutação / Conversor dual / Gradadores / Cicloconversores
11/10/2019	10	Princípios de conversores CC-CC comutados em alta frequência
18/10/2019	11	Princípios de conversores CC-CC isolados comutados em alta frequência
25/10/2019	12	Princípios de inversores comutados em alta frequência
01/11/2019	13	Prova 2
08/11/2019	14	Modelagem de perdas em conversores PWM
22/11/2019	15	Apresentação de trabalhos
29/11/2019	16	Data final para apresentação do trabalho
06/12/2019	17	Avaliação final
	18	
	19	
	20	

Datas e atividades de aulas práticas (laboratório)

As aulas de laboratório seguirão o conteúdo programático conforme exemplo de calendário que segue abaixo para uma das turmas. Para as outras turmas alteram-se apenas os dias de aulas em função dos dias não letivos. Outras informações poderão ser obtidas na página da disciplina no sistema Moodle UFSC: http://moodle.ufsc.br/

Data	Aula n°	Assunto
	1	Aula introdutória / Procedimentos no laboratório / Introdução à simulação de
	2	conversores
	2	Exp.1: Retificador monofásico de meia onda a diodo (4.1, pp. 8-19)
	3	Exp.2: Retificador monofásico de onda completa a diodos, c/ ponto médio (4.2, pp. 20- 25)
	4	Exp. 3: Retificador monofásico de onda completa em ponte, a diodos (4.3, pp. 26-34)
	5	Exp. 4: Retificador trifásico com ponto médio, a diodos (4.4, pp. 35-40)
	6	Exp. 5: Retificador de onda completa a diodos (ponte de Graetz) (4.5, pp. 41-49)
	7	Exp. 6: Retificador monofásico de meia onda, a tiristores (4.6, pp. 50-59)
	8	Exp. 7: - Ponte retificadora monofásica a tiristores (4.9, pp. 76 – 83) - Ponte retificadora monofásica mista (D + T) (4.05, pp. 84-91)
	9	Exp. 8: - Ponte retificadora trifásica a tiristores (4.06, pp. 92-97) - Ponte retificadora trifásica mista, diodos-tiristores (4.07, pp. 98-053)

05	Exp. 9: - Gradador monofásico com tiristores em antiparalelo (4.7, pp. 60-65) - Proteção dos tiristores contra dv/dt (4.8, pp. 66-75)
06	Exp. 05: - Conversores CC-CC não isolados
07	Exp. 06: - Conversores CC-CC isolados
13	Exp. 07: - Inversores
14	Aula de recuperação de conteúdos
15	Provas de bancada
16	Provas de bancada

Bibliografia

Bibliografia Básica:

- [1] On-line book: Prof. Williams, Power Electronics: Devices, Drivers, Applications, and Passive Components, download disponível em: http://www.eee.strath.ac.uk/~bwwilliams/book.htm
- [2] Barbi, Ivo. Eletrônica de Potência Edição do Autor, 7ª Edição, 2014.
- [3] Erickson, Robert W., and Dragan Maksimovic. Fundamentals of power electronics. Springer Science & Business Media, 2007.

Bibliografia Complementar:

- [4] Choi, Byungcho. Pulsewidth Modulated DC-to-DC Power Conversion: Circuits, Dynamics, and Control Designs. [S.l.]: John Wiley & Sons, 2013.
- [5] Pelly, B. R.. Thyristor Phase-controlled Converters and Cycloconverters Ed. John Wiley & Sons, New York, 1971.
- [6] Mohan, Ned, and Tore M. Undeland. Power electronics: converters, applications, and design. John Wiley & Sons, 2007.
- [7] Muhammad H. Rashid, Power Electronics: Circuits, Devices, and Applications, 3rd Ed., IEEE, 2003.
- [8] Wu, Bin. High-power converters and AC drives. John Wiley & Sons, 2006.